掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
數據科學中的實用線性代數 版權信息
- ISBN:9787576605884
- 條形碼:9787576605884 ; 978-7-5766-0588-4
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
數據科學中的實用線性代數 內容簡介
如果你想從事計算或技術領域的工作,理解線性代數是少不了的。線性代數的研究對象是矩陣及其運算,是幾乎所有計算機算法和分析的數學基礎。但它在幾十年前的教科書中的呈現方式與專業人員如今用來解決現實世界問題的方式有很大不同。這本來自Mike X Cohen的實用指南講授了以Python實現的線性代數的核心概念,包括如何在數據科學、機器學習、深度學習、計算模擬和生物醫學數據處理應用中使用它們。有了這本書,理解、實現和適應繁多的現代分析方法和算法將不再是問題。
數據科學中的實用線性代數 目錄
Preface
1. Introduction
What Is Linear Algebra and Why Learn It
About This Book
Prerequisites
Math
Attitude
Coding
Mathematical Proofs Versus Intuition from Coding
Code, Printed in the Book and Downloadable Online
Code Exercises
How to Use This Book (for Teachers and Self Learners)
2. Vectors, Part 1
Creating and Visualizing Vectors in NumPy
Geometry of Vectors
Operations on Vectors
Adding Two Vectors
Geometry of Vector Addition and Subtraction
Vector-Scalar Multiplication
Scalar-Vector Addition
Transpose
Vector Broadcasting in Python
Vector Magnitude and Unit Vectors
The Vector Dot Product
The Dot Product Is Distributive
Geometry of the Dot Product
Other Vector Multiplications
Hadamard Multiplication
Outer Product
Cross and Triple Products
Orthogonal Vector Decomposition
Summary
Code Exercises
3. Vectors, Part 2
Vector Sets
Linear Weighted Combination
Linear Independence
The Math of Linear Independence
Independence and the Zeros Vector
Subspace and Span
Basis
Definition of Basis
Summary
Code Exercises
4. Vector Applications
Correlation and Cosine Similarity
Time Series Filtering and Feature Detection
k-Means Clustering
Code Exercises
Correlation Exercises
Filtering and Feature Detection Exercises
k-Means Exercises
5. Matrices, Part 1
Creating and Visualizing Matrices in NumPy
Visualizing, Indexing, and Slicing Matrices
Special Matrices
Matrix Math: Addition, Scalar Multiplication, Hadamard Multiplication
Addition and Subtraction
"Shifting" a Matrix
Scalar and Hadamard Multiplications
Standard Matrix Multiplication
Rules for Matrix Multiplication Validity
Matrix Multiplication
Matrix-Vector Multiplication
Matrix Operations: Transpose
……
6. Matrices, Part 2
7. Matrix Applications
8. Matrix Inverse
9. Orthogonal Matrices and QR Decomposition
10. Row Reduction and LU Decomposition
11. General Linear Models and Least Squares
12. Least Squares Applications
13. Eigendecomposition
14. Singular Value Decomposition
15. Eigendecomposition and SVD Applications
16. Python Tutorial
1. Introduction
What Is Linear Algebra and Why Learn It
About This Book
Prerequisites
Math
Attitude
Coding
Mathematical Proofs Versus Intuition from Coding
Code, Printed in the Book and Downloadable Online
Code Exercises
How to Use This Book (for Teachers and Self Learners)
2. Vectors, Part 1
Creating and Visualizing Vectors in NumPy
Geometry of Vectors
Operations on Vectors
Adding Two Vectors
Geometry of Vector Addition and Subtraction
Vector-Scalar Multiplication
Scalar-Vector Addition
Transpose
Vector Broadcasting in Python
Vector Magnitude and Unit Vectors
The Vector Dot Product
The Dot Product Is Distributive
Geometry of the Dot Product
Other Vector Multiplications
Hadamard Multiplication
Outer Product
Cross and Triple Products
Orthogonal Vector Decomposition
Summary
Code Exercises
3. Vectors, Part 2
Vector Sets
Linear Weighted Combination
Linear Independence
The Math of Linear Independence
Independence and the Zeros Vector
Subspace and Span
Basis
Definition of Basis
Summary
Code Exercises
4. Vector Applications
Correlation and Cosine Similarity
Time Series Filtering and Feature Detection
k-Means Clustering
Code Exercises
Correlation Exercises
Filtering and Feature Detection Exercises
k-Means Exercises
5. Matrices, Part 1
Creating and Visualizing Matrices in NumPy
Visualizing, Indexing, and Slicing Matrices
Special Matrices
Matrix Math: Addition, Scalar Multiplication, Hadamard Multiplication
Addition and Subtraction
"Shifting" a Matrix
Scalar and Hadamard Multiplications
Standard Matrix Multiplication
Rules for Matrix Multiplication Validity
Matrix Multiplication
Matrix-Vector Multiplication
Matrix Operations: Transpose
……
6. Matrices, Part 2
7. Matrix Applications
8. Matrix Inverse
9. Orthogonal Matrices and QR Decomposition
10. Row Reduction and LU Decomposition
11. General Linear Models and Least Squares
12. Least Squares Applications
13. Eigendecomposition
14. Singular Value Decomposition
15. Eigendecomposition and SVD Applications
16. Python Tutorial
展開全部
數據科學中的實用線性代數 作者簡介
邁克·X.科恩是荷蘭唐德斯研究所(拉德堡德大學醫學中心)的神經科學副教授。他在科學編程、數據分析、統計學和相關主題的教學方面擁有20多年的經驗,并且已經創作了多門在線課程和教材。Mike身上有一種冷幽默感,喜歡紫色的東西。
書友推薦
- >
自卑與超越
- >
唐代進士錄
- >
山海經
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
- >
我與地壇
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
新文學天穹兩巨星--魯迅與胡適/紅燭學術叢書(紅燭學術叢書)
- >
中國歷史的瞬間
本類暢銷