婷婷五月情,国产精品久久久久久亚洲小说,runaway韩国电影免费完整版,国产乱在线观看视频,日韩精品首页,欧美在线视频二区

歡迎光臨中圖網 請 | 注冊
> >
推薦系統——飛槳深度學習實戰

包郵 推薦系統——飛槳深度學習實戰

出版社:清華大學出版社出版時間:2023-06-01
開本: 其他 頁數: 260
中 圖 價:¥53.4(7.7折) 定價  ¥69.8 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

推薦系統——飛槳深度學習實戰 版權信息

  • ISBN:9787302623755
  • 條形碼:9787302623755 ; 978-7-302-62375-5
  • 裝幀:平裝-膠訂
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

推薦系統——飛槳深度學習實戰 本書特色

本書有以下特色:
1.由淺入深,對于推薦系統沒有經驗的讀者也可以全貌地了解推薦系統。
2.兼容并包,對從經典的機器學習方法到的深度學習方法都進行了詳細講解。
3.知行合一,除了介紹重要的算法的原理和推導過程外,也配置了相應的實驗。
4.學以致用,立足于工業應用介紹推薦系統。帶領讀者動手從零搭建推薦系統 。
5.工業經驗,借鑒百度先進的推薦系統經驗,做到理論和實踐相結合 。

推薦系統——飛槳深度學習實戰 內容簡介

本書將推薦系統的理論基礎與代碼實踐相結合,內容涵蓋各類非個性化和個性化、經典及優選的推薦算法,以及工業界推薦系統的基本流程、步驟。本書可以作為各高校相關專業智能推薦系統課程教材,也可以作為技術人員的參考書籍。通過本書,讀者可以掌握推薦系統的基本概念、評價指標,熟悉推薦系統在工業界應用的具體過程,既可以了解基于傳統機器學習的推薦算法,也可以學習基于深度學習的前沿推薦算法,本書的*后一章帶領讀者熟悉推薦系統領域的關鍵問題和挑戰。

推薦系統——飛槳深度學習實戰 目錄

第1章推薦系統概述 1.1推薦系統的背景與價值 1.1.1推薦系統的背景 1.1.2典型的推薦系統應用 1.2推薦系統是如何工作的 1.2.1推薦系統的基本任務 1.2.2推薦系統的工作過程 1.2.3推薦系統的原理 1.3推薦系統的歷史與分類 1.3.1推薦系統的發展歷史 1.3.2推薦算法的分類 1.4推薦系統評測 1.4.1推薦系統的評測方法 1.4.2推薦系統的評測指標 參考文獻 第2章生產環境下的推薦系統 2.1推薦系統的業務流程 2.1.1推薦總體流程 2.1.2召回環節 2.1.3排序環節 2.1.4后處理調整 2.2推薦系統的主要業務模塊 2.2.1數據采集與處理模塊 2.2.2特征工程模塊 2.2.3推薦算法模塊 2.2.4用戶交互模塊 2.3推薦系統架構設計 2.3.1總體業務架構 2.3.2數據層 2.3.3算法層 2.3.4系統層 2.4線上系統的A/B測試 2.4.1前端接口 2.4.2數據讀取接口 2.4.3測試及評估接口 2.4.4監控接口 參考文獻 第3章機器學習算法基礎 3.1機器學習算法概述 3.1.1機器學習算法基本過程 3.1.2機器學習算法的分類 3.2線性回歸算法 3.2.1線性回歸模型 3.2.2線性回歸模型的損失函數 3.2.3梯度下降求解線性回歸模型參數的值 3.2.4線性回歸算法正則化 3.2.5實驗 3.2.6線性回歸算法特點 3.3邏輯回歸算法 3.3.1邏輯回歸模型 3.3.2邏輯回歸損失函數 3.3.3梯度下降求解值 3.3.4邏輯回歸算法的正則化 3.3.5實驗 3.3.6邏輯回歸算法特點 3.4決策樹 3.4.1決策樹的結構 3.4.2決策樹算法 3.4.3決策樹算法總結 3.4.4基于sklearn的決策樹實驗 3.5樸素貝葉斯 3.5.1樸素貝葉斯相關的統計學知識 3.5.2樸素貝葉斯模型 3.5.3總結 3.5.4基于sklearn的NaiveBayes實驗 3.6神經網絡 3.6.1神經元模型 3.6.2全連接神經網絡 3.6.3卷積神經網絡 3.6.4循環神經網絡 3.6.5圖神經網絡 3.6.6實驗評估 參考文獻 第4章典型推薦算法 4.1推薦算法相關知識 4.1.1推薦算法的分類 4.1.2推薦系統中的隱式反饋、顯式反饋 4.1.3推薦系統中的損失函數 4.2非個性化推薦算法 4.2.1基于流行度的推薦方法 4.2.2基于關聯規則的推薦方法 4.3基于內容的推薦 4.3.1基本思想和過程 4.3.2一個基于內容推薦的示例 4.3.3基于標簽的推薦 4.4基于統計(相似度)的方法 4.4.1基于用戶的協同過濾 4.4.2基于物品的協同過濾 4.5基于矩陣分解的個性化推薦 4.5.1Matrix Factorization算法(MF/SVD) 4.5.2BiasSVD算法 4.5.3SVD 算法 4.5.4WRMF和EALS算法 4.6基于物品的協同過濾 4.6.1背景簡介 4.6.2SLIM算法 4.6.3FISM算法 參考文獻 第5章點擊率預估算法 5.1推薦系統中的召回和排序過程 5.1.1為什么需要召回和排序環節 5.1.2召回、排序環節的典型方法 5.2點擊率預測簡介 5.3邏輯回歸模型 5.3.1背景 5.3.2基于LR模型的CTR預測流程 5.3.3實驗 5.4因式分解機模型 5.4.1背景 5.4.2FM模型原理 5.4.3實驗 5.5梯度提升樹模型 5.5.1背景 5.5.2模型原理 5.5.3實驗 5.6梯度提升樹 邏輯回歸模型(GBDT LR) 5.6.1背景 5.6.2模型原理 5.6.3實驗 5.7基于深度學習的CTR模型 5.7.1模型的記憶能力和泛化能力 5.7.2Wide&Deep模型 5.7.3DeepFM模型 5.7.4xDeepFM模型 5.7.5實驗 5.8本章小結 參考文獻 第6章基于深度學習的推薦算法 6.1為什么需要深度學習 6.1.1推薦算法應用的挑戰 6.1.2深度學習的優勢 6.2深度學習與推薦系統的分類 6.2.1表征學習 6.2.2交互建模 6.3基于深度學習的矩陣分解推薦算法DeepMF 6.3.1背景 6.3.2模型原理 6.3.3實驗 6.3.4模型總結 6.4基于深度學習的協同過濾推薦算法NeuralCF 6.4.1背景 6.4.2模型原理 6.4.3實驗 6.4.4模型總結 6.5基于深度學習的物品協同過濾算法DICF 6.5.1DICF模型結構 6.5.2DICF模型優化 6.5.3實驗評估 6.5.4DICF模型總結 6.6基于GNN的協同過濾算法 6.6.1背景 6.6.2模型原理 6.6.3實驗 6.6.4模型改進 6.6.5模型總結 6.7基于GNN的混合推薦算法 6.7.1DiffNet模型 6.7.2AGCN模型 6.8本章小結 參考文獻 第7章一個簡易的推薦系統 7.1簡易推薦系統需求描述 7.1.1數據集準備 7.1.2推薦模型準備 7.1.3構建在線推薦接口 7.2數據集處理 7.2.1用戶數據處理 7.2.2物品(電影)數據處理 7.2.3評分數據處理 7.2.4構建數據讀取器 7.3基于PaddlePaddle實現的神經網絡推薦模型 7.3.1用戶特征向量構造 7.3.2電影特征向量構造 7.3.3模型訓練和參數保存 7.4模擬在線電影推薦 第8章推薦系統中的問題與挑戰 8.1冷啟動問題 8.1.1冷啟動問題定義 8.1.2冷啟動解決方法 8.2數據稀疏性問題 8.2.1數據稀疏問題定義 8.2.2數據稀疏問題解決方法 8.3推薦可解釋性問題 8.3.1可解釋問題定義 8.3.2推薦解釋方法 8.4大數據處理與增量計算問題 8.4.1大數據問題定義 8.4.2大數據問題解決方法 8.5數據偏差問題 8.5.1數據偏差問題定義 8.5.2緩解數據偏差的方法 8.6其他問題 8.6.1時效性問題 8.6.2多樣性問題 8.6.3用戶意圖檢測問題 參考文獻
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 亚洲国产成人精品区 | 五月婷婷六月丁香激情 | 你懂的在线免费视频 | 九七视频在线观看 | 拍拍拍交性免费视频 | 欧美性视频在线 | 好吊色青青青国产综合在线观看 | 米奇四色影院 | 国产91精品一区二区麻豆亚洲 | 国内成人自拍视频 | 99热免费在线观看 | 免费在线一区 | 青草九九 | 精品久久久久久国产牛牛app | 欧美日韩国产综合视频在线看 | 四虎成人免费电影 | 国产日韩精品视频 | 色九月亚洲综合网 | 欧美女人性视频 | 久久天天躁狠狠躁夜夜2020一 | 精品久久久久久午夜 | 婷婷激情五月小说综合无弹窗 | 你懂的 在线播放 | 国产精品99精品久久免费 | 久久精品免观看国产成人 | 精品免费| 色即是空电影在线 | 狠狠一区 | 男人社区天堂 | 狠狠久 | 欧美淫视频 | 国产一级视频在线观看网站 | 免费一级在线 | 国产va| 韩国av片永久免费 | 成人国内精品久久久久影 | 一级片免费观看视频 | 久久这里只有精品视频99 | 欧美黄视频网站 | 国产成人99 | 激情总合网|