婷婷五月情,国产精品久久久久久亚洲小说,runaway韩国电影免费完整版,国产乱在线观看视频,日韩精品首页,欧美在线视频二区

歡迎光臨中圖網 請 | 注冊
> >>
Statistical learning from a regression perspective

包郵 Statistical learning from a regression perspective

出版社:世界圖書出版公司出版時間:2024-03-01
開本: 24cm 頁數: 26,433頁
中 圖 價:¥125.3(7.0折) 定價  ¥179.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

Statistical learning from a regression perspective 版權信息

Statistical learning from a regression perspective 內容簡介

這本統計學習的教材把關注點集中在給定一組預測變量并且在數據分析開始之前缺乏可以指定的可靠模型時的響應變量的條件分布上。 與現代數據分析一致,它強調適當的統計學習數據分析以綜合方式依賴于健全的數據收集、智能數據管理、適當的統計程序和對結果的可理解的解釋。監督學習可被統一視為回歸分析的一種形式。 通過大量實際應用及其相關的 R 代碼來說明關鍵概念和過程,著眼于實際意義。 計算機科學和統計學的日益融合在這本教材中得到了很好的體現。

Statistical learning from a regression perspective 目錄

1 Statistical Learning as a Regression Problem 1.1 Getting Started 1.2 Setting the Regression Context 1.3 Revisiting the Ubiquitous Linear Regression Model 1.3.1 Problems in Practice 1.4 Working with Statistical Models that are Wrong 1.4.1 An Alternative Approach to Regression 1.4.2 More on Statistical Inference with Wrong Models 1.4.3 Introduction to Sandwich Standard Errors 1.4.4 Introduction to Conformal Inference 1.4.5 Introduction to the Nonparametric Bootstrap 1.4.6 Wrong Regression Models with Binary Response Variables 1.5 The Transition to Statistical Learning 1.5.1 Models Versus Algorithms 1.6 Some Initial Concepts 1.6.1 Overall Goals of Statistical Learning 1.6.2 Forecasting with Supervised Statistical Learning 1.6.3 Overfitting 1.6.4 Data Snooping 1.6.5 Some Constructive Responses to Overfitting and Data Snooping 1.6.6 Loss Functions and Related Concepts 1.6.7 The Bias-Variance Tradeoff 1.6.8 Linear Estimators 1.6.9 Degrees of Freedom 1.6.10 Basis Functions 1.6.11 The Curse of Dimensionality 1.7 Statistical Learning in Context Endnotes References 2 Splines, Smoothers, and Kernels 2.1 Introduction 2.2 Regression Splines 2.2.1 Piecewise Linear Population Approximations 2.2.2 Polynomial Regression Splines 2.2.3 Natural Cubic Splines 2.2.4 B-Splines 2.3 Penalized Smoothing 2.3.1 Shrinkage and Regularization 2.4 Penalized Regression Splines 2.4.1 An Application 2.5 Smoothing Splines 2.5.1 A Smoothing Splines Illustration 2.6 Locally Weighted Regression as a Smoother 2.6.1 Nearest Nei or Methods 2.6.2 Locally Weighted Regression 2.7 Smoothers for Multiple Predictors 2.7.1 Smoothing in Two Dimensions 2.7.2 The Generalized Additive Model 2.8 Smoothers with Categorical Variables 2.8.1 An Illustration Using the Generalized Additive Model with a Binary Outcome 2.9 An Illustration of Statistical Inference After Model Selection 2.9.1 Level I Versus Level II Summary 2.10 Kernelized Regression 2.10.1 Radial Basis Kernel 2.10.2 ANOVA Radial Basis Kernel 2.10.3 A Kernel Regression Application 2.11 Summary and Conclusions Endnotes References 3 Classification and Regression Trees (CART) 3.1 Introduction 3.2 An Introduction to Recursive Partitioning in CART 3.3 The Basic Ideas in More Depth 3.3.1 Tree Diagrams for Showing What the Greedy Algorithm Determined 3.3.2 An Initial Application 3.3.3 Classification and Forecasting with CART 3.3.4 Confusion Tables 3.3.5 CART as an Adaptive Nearest Nei or Method 3.4 The Formalities of Splitting a Node 3.5 An Illustrative Prison Inmate Risk Assessment Using CART ... 3.6 Classification Errors and Costs 3.6.1 Default Costs in CART 3.6.2 Prior Probabilities and Relative Misclassification Costs 3.7 Varying the Prior and the Complexity Parameter 3.8 An Example with Three Response Categories 3.9 Regression Trees 3.9.1 A CART Application for the Correlates of a Student's GPA in High School 3.10 Pruning 3.11 Missing Data 3.11.1 Missing Data with CART 3.12 More on CART Instability 3.13 Summary of Statistical Inference with CART 3.13.1 Summary of Statistical Inference for CART Forecasts 3.14 Overall Summary and Conclusions Exercises Endnotes References 4 Bagging 4.1 Introduction 4.2 The Bagging Algorithm 4.3 Some Bagging Details 4.3.1 Revisiting the CART Instability Problem 4.3.2 Resampling Methods for Bagging 4.3.3 Votes Over Trees and Probabilities 4.3.4 Forecasting and Imputation 4.3.5 Bagging Estimation and Statistical Inference 4.3.6 Margins for Classification 4.3.7 Using Out-of-Bag Observations as Test Data 4.3.8 Baggi
展開全部

Statistical learning from a regression perspective 作者簡介

理查德·伯克(Richard A. Berk)現在是賓夕法尼亞大學統計系教授,加州大學洛杉磯分校統計學杰出榮休教授。他研究領域廣泛,在社會科學和自然科學均有很深的造詣。他是美國統計協會和美國科學促進會的會士。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 亚洲欧美日韩不卡 | 国产在线视频网 | 五月激情六月 | 国产成人精品亚洲2020 | 国产亚洲欧美精品久久久 | 综合色影院 | 韩国av片永久免费 | 99视频九九精品视频在线观看 | 日韩精品久久久久影院 | 久久99久久成人免费播放 | 爱爱视频欧美 | 欧美午夜一区二区福利视频 | 欧美日韩精彩视频 | 久久这里只有精品66 | 欧美激情综合亚洲一二区 | 晚上看的www视频高清免费动漫 | 国内精品久久久久久久久久久久 | 97在线播放 | 国产一级一级一级成人毛片 | 99re视频 | 日韩中文字幕亚洲无线码 | 国产99久久久国产精品免费直播 | 99精品国产免费久久久久久下载 | 欧美一区二区在线观看 | 99久久er热在这里都是精品99 | 成人黄色小电影 | 成人自拍视频在线 | 欧美在线综合视频 | 日本不卡视频网站 | 成人小视频免费 | 精品视频久久 | 国产成人精品男人的天堂网站 | 午夜成人影视 | 精品中文字幕久久久久久 | 视频精品一区二区三区 | 四虎影永久在线观看网址 | 欧美一级高清视频在线播放 | 国内偷自第一二三区 | 欧美日韩色综合网站 | 快播短视频 | 不良视频在线观看 |