掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
Statistical learning from a regression perspective 版權信息
- ISBN:9787523211328
- 條形碼:9787523211328 ; 978-7-5232-1132-8
- 裝幀:平裝-膠訂
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Statistical learning from a regression perspective 內容簡介
這本統計學習的教材把關注點集中在給定一組預測變量并且在數據分析開始之前缺乏可以指定的可靠模型時的響應變量的條件分布上。 與現代數據分析一致,它強調適當的統計學習數據分析以綜合方式依賴于健全的數據收集、智能數據管理、適當的統計程序和對結果的可理解的解釋。監督學習可被統一視為回歸分析的一種形式。 通過大量實際應用及其相關的 R 代碼來說明關鍵概念和過程,著眼于實際意義。 計算機科學和統計學的日益融合在這本教材中得到了很好的體現。
Statistical learning from a regression perspective 目錄
1 Statistical Learning as a Regression Problem
1.1 Getting Started
1.2 Setting the Regression Context
1.3 Revisiting the Ubiquitous Linear Regression Model
1.3.1 Problems in Practice
1.4 Working with Statistical Models that are Wrong
1.4.1 An Alternative Approach to Regression
1.4.2 More on Statistical Inference with Wrong Models
1.4.3 Introduction to Sandwich Standard Errors
1.4.4 Introduction to Conformal Inference
1.4.5 Introduction to the Nonparametric Bootstrap
1.4.6 Wrong Regression Models with Binary Response Variables
1.5 The Transition to Statistical Learning
1.5.1 Models Versus Algorithms
1.6 Some Initial Concepts
1.6.1 Overall Goals of Statistical Learning
1.6.2 Forecasting with Supervised Statistical Learning
1.6.3 Overfitting
1.6.4 Data Snooping
1.6.5 Some Constructive Responses to Overfitting and Data Snooping
1.6.6 Loss Functions and Related Concepts
1.6.7 The Bias-Variance Tradeoff
1.6.8 Linear Estimators
1.6.9 Degrees of Freedom
1.6.10 Basis Functions
1.6.11 The Curse of Dimensionality
1.7 Statistical Learning in Context
Endnotes
References
2 Splines, Smoothers, and Kernels
2.1 Introduction
2.2 Regression Splines
2.2.1 Piecewise Linear Population Approximations
2.2.2 Polynomial Regression Splines
2.2.3 Natural Cubic Splines
2.2.4 B-Splines
2.3 Penalized Smoothing
2.3.1 Shrinkage and Regularization
2.4 Penalized Regression Splines
2.4.1 An Application
2.5 Smoothing Splines
2.5.1 A Smoothing Splines Illustration
2.6 Locally Weighted Regression as a Smoother
2.6.1 Nearest Nei or Methods
2.6.2 Locally Weighted Regression
2.7 Smoothers for Multiple Predictors
2.7.1 Smoothing in Two Dimensions
2.7.2 The Generalized Additive Model
2.8 Smoothers with Categorical Variables
2.8.1 An Illustration Using the Generalized Additive Model with a Binary Outcome
2.9 An Illustration of Statistical Inference After Model Selection
2.9.1 Level I Versus Level II Summary
2.10 Kernelized Regression
2.10.1 Radial Basis Kernel
2.10.2 ANOVA Radial Basis Kernel
2.10.3 A Kernel Regression Application
2.11 Summary and Conclusions
Endnotes
References
3 Classification and Regression Trees (CART)
3.1 Introduction
3.2 An Introduction to Recursive Partitioning in CART
3.3 The Basic Ideas in More Depth
3.3.1 Tree Diagrams for Showing What the Greedy Algorithm Determined
3.3.2 An Initial Application
3.3.3 Classification and Forecasting with CART
3.3.4 Confusion Tables
3.3.5 CART as an Adaptive Nearest Nei or Method
3.4 The Formalities of Splitting a Node
3.5 An Illustrative Prison Inmate Risk Assessment Using CART ...
3.6 Classification Errors and Costs
3.6.1 Default Costs in CART
3.6.2 Prior Probabilities and Relative Misclassification Costs
3.7 Varying the Prior and the Complexity Parameter
3.8 An Example with Three Response Categories
3.9 Regression Trees
3.9.1 A CART Application for the Correlates of a Student's GPA in High School
3.10 Pruning
3.11 Missing Data
3.11.1 Missing Data with CART
3.12 More on CART Instability
3.13 Summary of Statistical Inference with CART
3.13.1 Summary of Statistical Inference for CART Forecasts
3.14 Overall Summary and Conclusions
Exercises
Endnotes
References
4 Bagging
4.1 Introduction
4.2 The Bagging Algorithm
4.3 Some Bagging Details
4.3.1 Revisiting the CART Instability Problem
4.3.2 Resampling Methods for Bagging
4.3.3 Votes Over Trees and Probabilities
4.3.4 Forecasting and Imputation
4.3.5 Bagging Estimation and Statistical Inference
4.3.6 Margins for Classification
4.3.7 Using Out-of-Bag Observations as Test Data
4.3.8 Baggi
展開全部
Statistical learning from a regression perspective 作者簡介
理查德·伯克(Richard A. Berk)現在是賓夕法尼亞大學統計系教授,加州大學洛杉磯分校統計學杰出榮休教授。他研究領域廣泛,在社會科學和自然科學均有很深的造詣。他是美國統計協會和美國科學促進會的會士。
書友推薦
- >
龍榆生:詞曲概論/大家小書
- >
人文閱讀與收藏·良友文學叢書:一天的工作
- >
李白與唐代文化
- >
伊索寓言-世界文學名著典藏-全譯本
- >
回憶愛瑪儂
- >
月亮與六便士
- >
巴金-再思錄
- >
我從未如此眷戀人間
本類暢銷