-
>
全國(guó)計(jì)算機(jī)等級(jí)考試最新真考題庫(kù)模擬考場(chǎng)及詳解·二級(jí)MSOffice高級(jí)應(yīng)用
-
>
決戰(zhàn)行測(cè)5000題(言語理解與表達(dá))
-
>
軟件性能測(cè)試.分析與調(diào)優(yōu)實(shí)踐之路
-
>
第一行代碼Android
-
>
JAVA持續(xù)交付
-
>
EXCEL最強(qiáng)教科書(完全版)(全彩印刷)
-
>
深度學(xué)習(xí)
數(shù)據(jù)挖掘 第2版 版權(quán)信息
- ISBN:9787312022449
- 條形碼:9787312022449 ; 978-7-312-02244-9
- 裝幀:暫無
- 冊(cè)數(shù):暫無
- 重量:暫無
- 所屬分類:>>
數(shù)據(jù)挖掘 第2版 內(nèi)容簡(jiǎn)介
數(shù)據(jù)挖掘技術(shù),又稱為數(shù)據(jù)庫(kù)知識(shí)發(fā)現(xiàn),是20世紀(jì)90年代在信息技術(shù)領(lǐng)域開始迅速發(fā)展起來的計(jì)算機(jī)技術(shù)。作者結(jié)合自己近20年從事人工智能、機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘等方面的科研工作積累與教學(xué)經(jīng)驗(yàn),編著此書。
本書較全面系統(tǒng)地介紹了數(shù)據(jù)挖掘中常用和常見的數(shù)據(jù)挖掘方法,以及文本與視頻數(shù)據(jù)挖掘方法。
本書的主要內(nèi)容包括:數(shù)據(jù)挖掘基本知識(shí)、數(shù)據(jù)挖掘預(yù)處理方法、決策樹分類及其他分類方法、關(guān)聯(lián)知識(shí)挖掘方法、各種聚類分析方法,以及文本挖掘所涉及表示、分類和聚類等方法,還包括視頻挖掘所涉及的視頻鏡頭檢測(cè)、字幕提取、視頻摘要和視頻檢索等主要分析方法。
本書作為學(xué)習(xí)、掌握和應(yīng)用數(shù)據(jù)挖掘方法和技術(shù)的綜合指導(dǎo)書,是從事數(shù)據(jù)挖掘研究與應(yīng)用人員,以及希望了解數(shù)據(jù)挖掘主要方法和技術(shù)的it技術(shù)人員的良師益友;同時(shí)也是一本可用于大學(xué)高年級(jí)或研究生相關(guān)課程的教材和參考文獻(xiàn)。
數(shù)據(jù)挖掘 第2版 目錄
前言
第1章 數(shù)據(jù)挖掘?qū)д?br> 1.1 數(shù)據(jù)挖掘的發(fā)展背景
1.2 數(shù)據(jù)挖掘定義
1.3 數(shù)據(jù)挖掘過程
1.4 數(shù)據(jù)挖掘功能
1.5 數(shù)據(jù)挖掘應(yīng)用
1.6 數(shù)據(jù)挖掘發(fā)展
1.7 本章小結(jié)
第2章 數(shù)據(jù)預(yù)處理
2.1 數(shù)據(jù)描述
2.1.1 數(shù)據(jù)集類型
2.1.2 數(shù)據(jù)質(zhì)量
2.2 數(shù)據(jù)清理
2.2.1 缺失值處理
2.2.2 噪聲數(shù)據(jù)處理
2.2.3 數(shù)據(jù)清理過程
2.3 數(shù)據(jù)集成和變換
2.3.1 數(shù)據(jù)集成
2.3.2 數(shù)據(jù)變換
2.3.3 維度歸約
2.4 數(shù)據(jù)歸約
2.4.1 數(shù)據(jù)立方體聚集
2.4.2 屬性子集選擇
2.5 本章小結(jié)
第3章 分類挖掘:決策樹
3.1 決策樹方法
3.2 決策樹深入
3.2.1 信息熵基礎(chǔ)
3.2.2 c4.5方法
3.2.3 cart方法
3.2.4 sliq方法
3.2.5 sprint方法
3.2.6 其他決策樹方法
3.3 決策樹的簡(jiǎn)化
3.4 決策樹的改進(jìn)
3.4.1 屬性選擇
3.4.2 連續(xù)屬性離散化
3.5 決策樹的討論
3.5.1 決策樹優(yōu)化問題
3.5.2 決策樹優(yōu)化方法
3.6 分類模型的評(píng)估
3.7 本章小結(jié)
第4章 分類挖掘
4.1 貝葉斯方法
4.1.1 貝葉斯方法概述
4.1.2 樸素貝葉斯分類
4.2 k-近鄰方法
4.3 人工神經(jīng)網(wǎng)絡(luò)方法
4.4 遺傳進(jìn)化方法
4.5 支持向量機(jī)方法
4.5.1 svm分類方法
4.6 粗糙集方法
4.7 集成學(xué)習(xí)方法
……
第5章 關(guān)聯(lián)挖掘
第6章 聚類挖掘
第7章 異類挖掘
第8章 文本挖掘
第9章 視頻挖掘
第10章 視頻分析
數(shù)據(jù)挖掘 第2版 節(jié)選
數(shù)據(jù)挖掘技術(shù),又稱為數(shù)據(jù)庫(kù)知識(shí)發(fā)現(xiàn),是20世紀(jì)90年代在信息技術(shù)領(lǐng)域開始迅速發(fā)展起來的計(jì)算機(jī)技術(shù)。作者結(jié)合自己近20年從事人工智能、機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘等方面的科研工作積累與教學(xué)經(jīng)驗(yàn),編著此書。
《數(shù)據(jù)挖掘》較全面系統(tǒng)地介紹了數(shù)據(jù)挖掘中常用和常見的數(shù)據(jù)挖掘方法,以及文本與視頻數(shù)據(jù)挖掘方法。
《數(shù)據(jù)挖掘》的主要內(nèi)容包括:數(shù)據(jù)挖掘基本知識(shí)、數(shù)據(jù)挖掘預(yù)處理方法、決策樹分類及其他分類方法、關(guān)聯(lián)知識(shí)挖掘方法、各種聚類分析方法,以及文本挖掘所涉及表示、分類和聚類等方法,還包括視頻挖掘所涉及的視頻鏡頭檢測(cè)、字幕提取、視頻摘要和視頻檢索等主要分析方法。
《數(shù)據(jù)挖掘》作為學(xué)習(xí)、掌握和應(yīng)用數(shù)據(jù)挖掘方法和技術(shù)的綜合指導(dǎo)書,是從事數(shù)據(jù)挖掘研究與應(yīng)用人員,以及希望了解數(shù)據(jù)挖掘主要方法和技術(shù)的IT技術(shù)人員的良師益友;同時(shí)也是一本可用于大學(xué)高年級(jí)或研究生相關(guān)課程的教材和參考文獻(xiàn)。
- >
史學(xué)評(píng)論
- >
姑媽的寶刀
- >
羅庸西南聯(lián)大授課錄
- >
李白與唐代文化
- >
新文學(xué)天穹兩巨星--魯迅與胡適/紅燭學(xué)術(shù)叢書(紅燭學(xué)術(shù)叢書)
- >
中國(guó)歷史的瞬間
- >
月亮虎
- >
隨園食單